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Some definitions that are not important but are fun

A walk is a finite or infinite sequence of edges which joins a sequence of vertices.

A trail is a walk in which all edges are distinct.

A path is a trail in which all vertices are distinct.

A circuit is a non-empty trail in which the first and last vertices are equal.

A cycle is a circuit in which only the first and last vertices are equal.



What exactly is connectivity?

In an undirected graph G, two vertices u 
and v are called connected if there exists 
a path from u to v. 

G is then said to be connected if every 
pair of vertices in the graph is connected.

A connected graph.



Connected Components

A connected component of a graph is a 
maximal connected subgraph.

Namely, a connected component is a 
connected subgraph which is not a 
subgraph of any larger connected 
subgraph.

A graph with three connected components.



Bridges

A bridge, or cut-edge, is an 
edge whose removal increases 
the number of connected 
components in a graph.

We can find bridges in                     
O(n + m) time.

A familiar-looking graph with bridges highlighted in white.



2-Edge-connectivity

A 2-edge-connected graph is                                
a graph where if any                                                      
edge is removed, it stays                                                 
connected.

In other words, it is a graph      
with no bridges.

(In general, a k-edge-connected 
graph is a graph where removing 
any k-1 edges will not make it 
disconnected.)

A 2-edge-connected graph



2-Edge-connectivity

A 2-edge-connected component      
of a graph is a maximal 
2-edge-connected subgraph. 
(similar definition to          
connected components)

2CCs denoted by colors.



The 2CCs are connected by the      
bridges of the graph, and since                            
there can be no cycle that             
contains a bridge,                                 
we can conclude that                  
compressing each 2CCs into a           
single vertex will always leave           
us with a tree. (or forest)

2CCs denoted by colors.



Bridge Tree

Applying above-mentioned 
compression on our example gives 
us the following tree:

Any path between vertices in the 
original graph must go through 
the bridges along the unique path 
between their 2CCs on the 
bridge tree.

We can compress a graph into a 
bridge tree in O(n + m) time.

The same graph compressed into a bridge tree.



Articulation Points

An articulation point, or 
cutpoint, is a vertex whose 
removal, increases the 
number of connected 
components in a graph.

We can find articulation 
points in O(n + m) time.

Articulation points highlighted in white.



Biconnectivity

A biconnected graph is                                 
a graph where if any                              
vertex is removed, it stays             
connected.

In other words, it is a graph          
with no cutpoints.

If a graph has more than 2 
vertices, it is biconnected if and 
only if there are two distinct 
paths between any two vertices.

A biconnected graph.



Biconnectivity

A biconnected component is                                 
a maximal biconnected subgraph.

Unlike with 2CCs, a vertex                         
can be in multiple BCCs,                              
as shown. (Thus we can’t as                  
easily compress the graph into                               
a useful form)

Notice how the articulation points are 
exactly the points that are in more than 
one BCC. (They connect different BCCs)

If there exists a cycle through a pair of 
vertices, they are in a common BCC. Biconnected components denoted by colors.



This is useful because

Any path between vertices in       
our original graph, must go 
through the articulation points            
that are on the unique path                      
between them in this tree. 

We can create this tree in         
O(n + m) time.                                                                  

Our new tree.



What now?

Create a new graph with all        
the same vertices and a new 
representative vertex for each 
biconnected component.

Add edges between each 
biconnected component’s 
representative vertex and the 
vertices which are contained 
within it.

Our new tree.



Block-cut tree

If we remove all the vertices except 
for the representative vertices and 
cut-points then what we have is called 
a block-cut tree.

This is more efficient and could work 
just as well in some cases but 
sometimes it helps to have all the 
vertices present.

Our new tree.



Not all 2-edge-connected graphs are biconnected.

An example of a graph that is 2-edge-connected but not biconnected.

Pretty sure that in 2-edge-connected graphs, there exists a circuit through any two vertices.



Not all biconnected graphs are 2-edge-connected.

An example of a graph that is biconnected but not 2-edge-connected.

Also an example of a biconnected graph where there is not a cycle through each pair of vertices.



Example Problems

While we let the theory sink in, let’s look at some example problems to motivate 
the usefulness of knowing the theory and get a hang of spotting the required 
algorithms before actually moving on to the code.



CSES : Building Roads

Given an undirected graph with n ≤ 10⁵ vertices and m ≤ 2×10⁵ edges, find a set 
of new edges with minimal size such that adding them would make the graph 
connected.

https://cses.fi/problemset/task/1666


SACO 2013 : Shipping Routes

Given a simple undirected graph of n ≤ 10⁵ vertices and m ≤ 3×10⁵ edges, output 
a list of vertices that are not on any cycle.

https://olympiad.org.za/programming-olympiad/past-papers/final-round/


CSES : Strongly Connected Edges

Given a simple undirected graph of n ≤ 10⁵ vertices and m ≤ 2×10⁵ edges, find a 
strong orientation of the graph or say if it’s impossible.

i.e. choose a direction for each edge such that the resulting graph is strongly 
connected.

https://cses.fi/problemset/task/2177/


CEOI 2015 : Pipes

Given an undirected graph with n ≤ 10⁵ vertices and m ≤ 6×10⁶ edges, output a 
list of all its bridges.

Memory limit is 16mb. (not enough to store the edges, and the graph is not 
necessarily simple)

https://oj.uz/problem/view/CEOI15_pipes


PAIO 2020 : Traffic jams

Given an undirected graph with n ≤ 3×10⁵ vertices and m ≤ 3×10⁵ edges,             
answer q ≤ 3×10⁵ queries of the form :

What is the minimal number of bridges over all paths from s to t?

https://arena.moi/problem/paoitrafficjams


CSES : Forbidden Cities

Given an undirected graph with n ≤ 10⁵ vertices and m ≤ 2×10⁵ nodes,             
answer q ≤ 10⁵ queries of the form :

Does there exist a path from a to b that does not go through c?

https://cses.fi/problemset/task/1705


APIO 2018 : Duathlon

Given an undirected graph with n ≤ 10⁵ vertices and m ≤ 2×10⁵ edges, count the 
number of triples of vertices (a, b, c) such that there exists a path that goes 
through a, b, c in that order.

https://oj.uz/problem/view/APIO18_duathlon


USACO Platinum December 2017 : Push a box

Given an n × m grid (1 ≤ n, m ≤ 1500) with hay in some cells, a starting cell, and 
a cell with a box, answer q ≤ 5×10⁴ queries of the form :

“Can Bessie push the box to the cell (r, c)?”

Note that in every query, the starting cells of Bessie and the box are the 
same, and it is not possible for Bessie and the box to ever be in the same cell, 
or for either them to be in the same cell as hay.

http://www.usaco.org/index.php?page=viewproblem2&cpid=769


We actually have to write some code too :(

Let’s just quickly make sure we remember how to find connected components!



Finding connected components
// Using a depth-first search :

bool vis[N+1] = {false};

int cmp[N+1], cnt = 0;

void dfs(const int &u)

{

    vis[u] = true, cmp[u] = cnt;

    for (const int &v : g[u])

        if (!vis[v])

            dfs(v);

}

void find_connected_components()

{

    for (int u = 1; u <= N; u++)

        if (!vis[u])

        {

            cnt++;

            dfs(u);

        }

}

// Or using union-find :

int e[N+1];

int find(const int &u)

{

    return (e[u] < 0 ? u : e[u] = find(e[u]));

}

bool unite(int u, int v)

{

    u = find(u), v = find(v);

    if (u == v) return false;

    if (e[u] > e[v]) swap(u, v);

    e[u] += e[v], e[v] = u;

}

void find_connected_components()

{

    for (int u = 1; u <= N; u++)

        e[u] = -1;

    for (const auto &[u, v] : edges)

        unite(u, v);

}



Consider the dfs-tree of our graph.

This is the tree formed by the edges 
traversed while doing our dfs.

The edges that are marked during the dfs are 
called span-edges (or tree-edges). (blue)

The other edges are called back-edges. (white)

Note that back-edges always connect a vertex 
with one of its ancestors. (Otherwise it would 
have either been traversed earlier in the dfs, 
or been a span-edge)

Tarjan’s Algorithm for finding 
bridges and cut-points



Finding bridges

Back-edges are never bridges and a 
span-edge (u, v) is a bridge iff there 
exists no back-edge that connects an 
ancestor of u with a descendant of v.

● (a, b) is a bridge because no 
back-edges edges connect an 
ancestor of a with a descendant of b.

● (c, d) is not a bridge because there 
is a back-edges connecting an 
ancestor of c with a descendant of d

(btw, each vertex is a descendant and an 
ancestor of itself). 

d

c

a

b



Finding cut-points

A vertex u is a cut-point iff it has a child 
v such there are no back-edges 
connecting a vertex in the subtree of v 
with a vertex strictly above u (with an 
exception at the root).

● a is a cut-point because there is no 
back-edge connecting a vertex in the 
subtree of b with a vertex strictly 
above b.

● c is not a cut-point because there 
are back-edges connecting vertices 
in the subtrees of each of its 
children with a vertex strictly above 
it.

c

a

b



Finding bridges and cut-points

One way to check this is to store for 
every vertex u, the entry time of u, 
and the earliest entry time of a vertex 
reached in the dfs from u (whether by 
a span-edge or a back-edge). 

Here we have labeled the vertices by 
their entry times tin[u] (white) and by 
this new value low[u] (red).
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Finding bridges and cut-points

To implement this, define the following for each u:

tin[u] = the entry time of u in the dfs.

low[u] = min 

Now we can write our condition in terms of these values :

● (u, v) is a bridge if tin[u] < low[v].
● u is a cut-point if u has a child v where tin[u] ≤ low[v], 

or if u is the root and has more than one child.

{              }tin[u]
tin[v] where (u, v) is a back-edge
low[v] where (u, v) is a span-edge



// finding bridges :
vector<int> g[N+1];
bool vis[N+1] = {false};
int tin[N+1], low[N+1], timer = 0;

first, declare the variables we will be needing



// finding bridges :
vector<int> g[N+1];
bool vis[N+1] = {false};
int tin[N+1], low[N+1], timer = 0;
void dfs(const int &u, const int &p = -1)
{
    vis[u] = true, tin[u] = low[u] = timer++;
    

create the dfs function, which passes a 
vertex u, and its parent p in the dfs-tree

mark u as visited, and initialize the value for tin[u] and low[u].



// finding bridges :
vector<int> g[N+1];
bool vis[N+1] = {false};
int tin[N+1], low[N+1], timer = 0;
void dfs(const int &u, const int &p = -1)
{
    vis[u] = true, tin[u] = low[u] = timer++;
    for (const int &v : g[u]) if (v != p) 
    {
        for each neighbour v of u that is not the parent of u in the dfs-tree,



// finding bridges :
vector<int> g[N+1];
bool vis[N+1] = {false};
int tin[N+1], low[N+1], timer = 0;
void dfs(const int &u, const int &p = -1)
{
    vis[u] = true, tin[u] = low[u] = timer++;
    for (const int &v : g[u]) if (v != p)
    {
        if (vis[v]) 
            low[u] = min(low[u], tin[v]);
        

handle the case where (u, v) is a back-edge



// finding bridges :
vector<int> g[N+1];
bool vis[N+1] = {false};
int tin[N+1], low[N+1], timer = 0;
void dfs(const int &u, const int &p = -1)
{
    vis[u] = true, tin[u] = low[u] = timer++;
    for (const int &v : g[u]) if (v != p)
    {
        if (vis[v])
            low[u] = min(low[u], tin[v]);
        else
        {
            dfs(v, u);
            low[u] = min(low[u], low[v]);
            

otherwise, recurse from v and update low[u]



// finding bridges :
vector<int> g[N+1];
bool vis[N+1] = {false};
int tin[N+1], low[N+1], timer = 0;
void dfs(const int &u, const int &p = -1)
{
    vis[u] = true, tin[u] = low[u] = timer++;
    for (const int &v : g[u]) if (v != p) 
    {
        if (vis[v]) 
            low[u] = min(low[u], tin[v]);
        else 
        {
            dfs(v, u);
            low[u] = min(low[u], low[v]);
            if (tin[u] < low[v])
                is_bridge(u, v); 
        }
    }
}

if (u, v) is a bridge, *do something*



// finding cut-points :

vector<int> g[N+1];

bool vis[N+1] = {false};

int tin[N+1], low[N+1], timer = 0;

void dfs(const int &u, const int &p = -1)

{

    vis[u] = true, tin[u] = low[u] = timer++;

    int children = 0;

    for (const int &v : g[u]) if (v != p) 

    {

        if (vis[v]) 

            low[u] = min(low[u], tin[v]);

        else 

        {

            dfs(v, u);

            low[u] = min(low[u], low[v]);

            if (tin[u] <= low[v] && p != -1)

                is_cutpoint(u); 

            children++;

        }

    }

    if (p == -1 && children > 1) 

        is_cutpoint(u);

}

Finding cut-points is mostly the same…

but we need to keep track of how many children the root has,

our condition here changes,

and this is how we deal with the root.



Finding 2CCs

We can easily adapt the bridge-finding algorithm to sort a graph into 2CCs 
and create a bridge-tree.

Simply check whether (u, v) is a bridge, and if it is not, u and v are in the 
same 2CC.

(Alternatively use a stack and pop from the stack after recursive dfs like 
Tarjan’s SCC algorithm)



// finding bridges :
vector<int> g[N+1];
bool vis[N+1] = {false};
int tin[N+1], low[N+1], timer = 0;
void dfs(const int &u, const int &p = -1)
{
    vis[u] = true, tin[u] = low[u] = timer++;
    for (const int &v : g[u]) if (v != p) 
    {
        if (vis[v]) 
            low[u] = min(low[u], tin[v]);
        else 
        {
            dfs(v, u);
            low[u] = min(low[u], low[v]);
            if (tin[u] >= low[v])
                unite(u, v); 
        }
    }
}

If (u, v) is not a bridge, use a union-find data structure
to keep track of them being in the same component.



And then to compress the graph into a new bridge graph, we add only the 
edges that were bridges in the original graph, between the representative 
nodes of each 2CC.

vector<int> G[N+1];

void compress_graph()

{

    for (int u = 1; u <= N; u++)

        for (const int &v : g[u])

            if (find(u) != find(v))

                G[find(u)].push_back(find(v));

}



Finding BCCs

To find BCCs and create our BCC graph, we add each vertex onto a stack, and 
when we find a span-edge (u, v) with tin[u] <= low[v], we know that u is either a 
cut-point or the root, so we pop from the stack until we reach v.



// creating a BCC-graph.

vector<int> g[N+1], stck;
bool vis[N+1] = {false};
int tin[N+1], low[N+1], timer = 0;
void dfs1(const int &u, const int &p = -1)

{

    vis[u] = true, low[u] = tin[u] = timer++;

    stck.push_back(u);

    for (const int &v : g[u]) if (v != p)

    {

        if (vis[v])

            low[u] = min(low[u], tin[v]);

        else

        {

            dfs1(v, u);

            low[u] = min(low[u], low[v]);

            if (low[v] >= tin[u]) 

            {

                cout << u << ' ';

                while (stck.back() != v)

                {

                    cout << stck.back() << ' ';

                    stck.pop_back();

                }

                cout << stck.back() << '\n';

                stck.pop_back();

            }

        }

    }

}

then we pop from the stack until we have popped v.

Here we add u to the stack.

If u is a cut-point,

The vertices that we pop from the stack, along with u, form a BCC.



// creating a BCC-graph.

vector<int> g[N+1], bcc_graph[2*N+1], stck;
bool vis[N+1] = {false};
int tin[N+1], low[N+1], timer = 0, bccs = 0;
void dfs1(const int &u, const int &p = -1)

{

    vis[u] = true, low[u] = tin[u] = timer++;

    stck.push_back(u);

    for (const int &v : g[u]) if (v != p)

    {

        if (vis[v])

            low[u] = min(low[u], tin[v]);

        else

        {

            dfs1(v, u);

            low[u] = min(low[u], low[v]);

            if (low[v] >= tin[u]) 

            {

                bccs++;

                bcc_graph[u].push_back(n + bccs);

                bcc_graph[n + bccs].push_back(u);

                do

                {

                    bcc_graph[n + bccs].push_back(stck.back());

                    bcc_graph[stck.back()].push_back(n + bccs);

                    stck.pop_back();

                } while (bcc_graph[n + bccs].back() != v);

            }

        }

    }

}

If we want a BCC graph,

we create a new representative vertex for this BCC
and add edges between it and each vertex in the BCC.



// creating a BCC-graph.

vector<int> g[N+1], bcc_graph[2*N+1], stck;
bool vis[N+1] = {false};
int tin[N+1], low[N+1], timer = 0, bccs = 0;
void dfs1(const int &u, const int &p = -1)

{

    vis[u] = true, low[u] = tin[u] = timer++;

    stck.push_back(u);

    for (const int &v : g[u]) if (v != p)

    {

        if (vis[v])

            low[u] = min(low[u], tin[v]);

        else

        {

            dfs1(v, u);

            low[u] = min(low[u], low[v]);

            if (low[v] >= tin[u]) 

            {

                bccs++;

                bcc_graph[u].push_back(n + bccs);

                do

                {

                    bcc_graph[n + bccs].push_back(stck.back());

                    stck.pop_back();

                } while (bcc_graph[n + bccs].back() != v);

            }

        }

    }

}

We could also root the tree and just store the 
children of each vertex



// creating a BCC-graph.

vector<int> g[N+1], stck;
bool vis[N+1] = {false};
int tin[N+1], low[N+1], par[2*N+1], timer = 0, bccs = 0;
void dfs1(const int &u, const int &p = -1)

{

    vis[u] = true, low[u] = tin[u] = timer++;

    stck.push_back(u);

    for (const int &v : g[u]) if (v != p)

    {

        if (vis[v])

            low[u] = min(low[u], tin[v]);

        else

        {

            dfs1(v, u);

            low[u] = min(low[u], low[v]);

            if (low[v] >= tin[u]) 

            {

                bccs++;

                par[n + bccs] = u;

                do

                {

                    par[stck.back()] = n + bccs;

                    stck.pop_back();

                } while (par[v] != n + bccs);

            }

        }

    }

}

We could also store only the parent of each 
vertex in the tree.



bool same_bcc(const int &u, const int &v)

{

    if (par[par[u]] == v) return true;

    if (par[u] == par[v]) return true;

    if (u == par[par[v]]) return true;

    return false;

}

This makes it quite easy and fast to check if two vertices are in a common BCC.
(The distance between them in the tree must be 2)



how the stack thing works
if low[v] > tin[u], (u, v) is a bridge and thus {u, v} 
is a BCC. (so we remove v from the stack as it 
can’t be in the same BCC as another ancestor of 
u) For example : (8, 9)

if low[v] == tin[u], there must be some back-edge 
in the subtree of v, connected to u and thus u and 
v are in a common BCC. (all the element on top of 
the stack up to u must be in this BCC, so remove 
up to v) For example : (10, 11)

if low[v] < tin[u], there must be some back-edge 
in the subtree of v, connected to an ancestor of u 
other than u, which would mean that v is in the 
same BCC as u and its parent. (so we do nothing 
since it will be dealt with at the highest cut-point 
in this BCC) For example : (5, 6)
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how the stack thing works

i still don’t really know

just memorize the algorithm
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Solutions to problems!

If you don’t like spoilers, close your eyes



CSES : Building Roads

Given an undirected graph with n ≤ 10⁵ vertices and m ≤ 2×10⁵ edges, find a set 
of new edges with minimal size such that adding them would make the graph 
connected.

Solution:

For each vertex other than 1, check if it is already in the same component as 
1, and add an edge if it is not.

Use DSU to do this.

https://cses.fi/problemset/task/1666


SACO 2013 : Shipping Routes

Given a simple undirected graph of n ≤ 10⁵ vertices and m ≤ 3×10⁵ edges, output 
a list of vertices that are not on any cycle.

Solution:

A vertex is on a cycle iff it is connected to a non-bridge.

(I think this is only true if the graph is simple)

https://olympiad.org.za/programming-olympiad/past-papers/final-round/


CSES : Strongly Connected Edges

Given a simple undirected graph of n ≤ 10⁵ vertices and m ≤ 2×10⁵ edges, find a 
strong orientation of the graph or say if it’s impossible.

Solution:

By Robbins’ Theorem, the graph has a strong orientation if and only if it is 
2-edge-connected.

Then, simply direct each edge in the direction that it was traversed in the dfs.

https://cses.fi/problemset/task/2177/
https://en.wikipedia.org/wiki/Robbins%27_theorem


Sidenote:
If we follow this process on any graph,

The 2-Edge-Connected components in the 
original graph must be exactly the Strongly 
Connected Components in this new graph.

Perhaps this is why Tarjan’s bridge-finding 
algorithm is almost exactly the same as 
Tarjan’s algorithm for finding strongly 
connected components?
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CEOI 2015 : Pipes

Given an undirected graph with n ≤ 10⁵ vertices and m ≤ 6×10⁶ edges, output a 
list of all its bridges.

Memory limit is 16mb. (not enough to store the edges, and the graph is not 
necessarily simple)

Solution:

Basically use two DSUs to keep track of pairs of vertices are already 
connected by more than one path. Edges between these vertices can’t be 
bridges. This way we don’t actually add more than 2n edges to the graph.

https://oj.uz/problem/view/CEOI15_pipes
https://ceoi2015.fi.muni.cz/solutions/solutions1.pdf


PAIO 2020 : Traffic jams

Given an undirected graph with n ≤ 3×10⁵ vertices and m ≤ 3×10⁵ edges,             
answer q ≤ 3×10⁵ queries of the form :

What is the minimal number of bridges over all paths from s to t?

Solution:

Compress into bridge tree and do distance queries using LCA.

https://arena.moi/problem/paoitrafficjams


CSES : Forbidden Cities

Given an undirected graph with n ≤ 10⁵ vertices and m ≤ 2×10⁵ nodes,             
answer q ≤ 10⁵ queries of the form :

Does there exist a path from a to b that does not go through c?

Solution:

Create BCC graph and check if c is on the path from a to b using LCA.

https://cses.fi/problemset/task/1705


APIO 2018 : Duathlon

Given an undirected graph with n ≤ 10⁵ vertices and m ≤ 2×10⁵ edges, count the 
number of triples of vertices (a, b, c) such that there exists a path that goes 
through a, b, c in that order.

Solution:

Create BCC graph and subtract bad triples using a dfs.

A triple (a, b, c) is bad if the paths from a to b and the paths from b to c 
must both go through some articulation point.

https://oj.uz/problem/view/APIO18_duathlon
https://usaco.guide/problems/apio-2018duathlon/solution


USACO Platinum December 2017 : Push a box

Given an n × m grid (1 ≤ n, m ≤ 1500) with hay in some cells, a starting cell, and a cell with a box, 
answer q ≤ 5×10⁴ queries of the form :

“Can Bessie push the box to the cell (r, c)?”

Solution:

Instead of something like 

dfs(Position of Box, Position of Bessie) which would be O(N²M²), we do

dfs(Position of Box, Direction from which Bessie pushed the box) in O(NM), using 

precomputed biconnected components to find the directions in which Bessie can push the box next.

http://www.usaco.org/index.php?page=viewproblem2&cpid=769
http://www.usaco.org/current/data/sol_pushabox_platinum_dec17.html


Some resources where you can find better explanations 
and more problems to practice with :
● cp-algorithms.com/graph/bridge-searching.html
● cp-algorithms.com/graph/cutpoints.html
● usaco.guide/adv/BCC-2CC
● codeforces.com/blog/entry/99259
● codeforces.com/blog/entry/68138
● commons.wikimedia.org/wiki/File:Graph-Biconnected-Components.svg

ask me if you want to see my code for one of the problems I showed because 
my code is always better than the official solution even when it is slower.

https://cp-algorithms.com/graph/bridge-searching.html
https://cp-algorithms.com/graph/cutpoints.html
https://usaco.guide/adv/BCC-2CC
https://codeforces.com/blog/entry/99259
https://codeforces.com/blog/entry/68138
https://commons.wikimedia.org/wiki/File:Graph-Biconnected-Components.svg

